معادلات دیفرانسیل جزئی مرتبه کسری تعمیمی از معادلات دیفرانسیل جزئی کلاسیک می شد. تاریخ حساب دیفرانسیل کسری، تقریبا هم قدمت حساب دیفرانسیل مرتبه ی صحیح است، حساب دیفرانسیل و انتگرال کسری زمینه ای از مطالعات ریاضی است که از تعاریف اولیه، از عملگرهای مشتق و انتگرال حساب دیفرانسیل و انتگرال معمولی به وجود آمده است. هرچند بخاطر فقدان سابقه ی کاربردی، حساب دیفرانسیل کسری پیشرفت کمی داشته است. بعلاوه این مدلها در موضوعاتی مثل جریانات سیال و. . . کاربرد دارد. در این مقاله، ما بعضی از روش های کاربردی را برای حل معادلات دیفرانسیل جزئی کسری زمانی با مقادیر اولیه و مرزی با ضرایب متغییر روی دامنه ی متناهی مورد استفاده قرار داده ایم. سازگاری، پایداری و در نتیجه همگرایی روش را اثبات کرده، و نشان داده ایم که روش کرانک-نیکلسون کسری با تقریب گرانوالد انتقال یافته بدون شرط پایدار است. این پژوهش از هردوجنبه ی تئوری و عددی حائز اهمیت می باشد، که در اینجا ما با ساختمان و تحلیل همگرایی الگوهای گسسته سازی سروکار داریم. و همچنین نتایج عددی ارائه و از نظر مرتبه همگرایی با جواب تحلیلی دقیق مقایسه گردیده است.